Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Luiz Everson da Silva, ${ }^{\text {a }}$

Antonio Carlos Joussef, ${ }^{\text {a }}$ Sabine Foro ${ }^{\text {b }}$ and Boris Schmidt ${ }^{\text {b }}$ *
${ }^{\text {a }}$ Departamento de Química-UFSC, 88040-900 Florianópolis, SC, Brazil, and ${ }^{\mathbf{b}}$ Clemens SchöpfInstitut für Organische Chemie und Biochemie, Technische Universität Darmstadt,
Petersenstrasse 22, D-64287 Darmstadt, Germany

Correspondence e-mail: foro@tu-darmstadt.de

Key indicators

Single-crystal X-ray study
$T=299 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.039$
$w R$ factor $=0.116$
Data-to-parameter ratio $=12.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Aquabis[4-nitro- N -(quinolin-8-yl)benzene-sulfonamidato- $\left.\kappa^{2} N, N^{\prime}\right]$ zinc(II)

In the title compound, $\left[\mathrm{Zn}\left(\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$, the asymmetric unit contains one half-molecule. The coordination of the $\mathrm{Zn}^{\text {II }}$ ion, which occupies a special position on a twofold axis, is distorted trigonal bipyramidal.

Comment

There is increasing evidence that interactions between the amyloid beta peptide and metal ions such as copper and zinc may assist in the transformation of this healthy soluble peptide to a neurotoxic fibrillary form responsible for Alzheimer's disease (Miller et al., 2005; Cardoso et al., 2005, Ii, 1995). As part of our efforts to search for metal chelators as potential probes for neuroprotection in neurogenerative diseases (da Silva et al., 2006a,b,c,d) the structure of the title compound, (I) (Fig. 1), has been determined.

(I)

The asymmetric unit of (I) contains one half-molecule. The other half of the complex is related by a C_{2} axis running through the $\mathrm{Zn}^{\mathrm{II}}$ ion and the water O atom. The $\mathrm{Zn}^{\mathrm{II}}$ ion has a distorted trigonal-bipyramidal geometry formed by two quinoline N and two sulfonamide N atoms and the O atom of the water molecule (Table 1). The angle between the leastsquares planes of the quinoline unit and the benzene ring is 89.27 (8) ${ }^{\circ}$. The water H atoms are shared between the water O atom and sulfonyl O atoms, linking the molecules in chains along the c axis (Fig. 2 and Table 2).

Experimental

The organic ligand was synthesized as reported previously (da Silva et al., 2005) and the title compound was prepared according to the method of Macías et al. (2003). Single crystals of (I) suitable for X-ray data collection were obtained after two days from a methanol solution.

Received 6 June 2006
Accepted 3 July 2006

Crystal data

$\left[\mathrm{Zn}\left(\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$

$M_{r}=740.03$

Monoclinic, $C 2 / c$
$a=31.407$ (6) A
$b=10.120$ (1) A
$c=10.342$ (1) \AA
$\beta=106.94$ (2) ${ }^{\circ}$
$V=3144.5(8) \AA^{3}$

Data collection

Nonius CAD-4 diffractometer $\omega / 2 \theta$ scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.326, T_{\text {max }}=0.869$
3477 measured reflections
2798 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.116$
$S=1.05$
2798 reflections
221 parameters
H atoms treated by a mixture of independent and constrained refinement

$Z=4$

$D_{x}=1.563 \mathrm{Mg} \mathrm{m}^{-3}$
$\mathrm{Cu} K \alpha$ radiation
$\mu=2.89 \mathrm{~mm}^{-1}$
$T=299$ (2) K
Needle, yellow
$0.50 \times 0.10 \times 0.05 \mathrm{~mm}$

2319 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.020$
$\theta_{\text {max }}=66.9^{\circ}$
3 standard reflections frequency: 120 min intensity decay: 1%

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0708 P)^{2}\right. \\
& \quad+2.3429 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.002 \\
& \Delta \rho_{\max }=0.30 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.74 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{N} 1-\mathrm{Zn} 1$	$2.187(2)$	$\mathrm{Zn} 1-\mathrm{O} 1 W$	$2.011(3)$
$\mathrm{N} 2-\mathrm{Zn} 1$	$2.091(2)$		
$\mathrm{O} 1 W-\mathrm{Zn} 1-\mathrm{N} 2$	$124.48(6)$	$\mathrm{N} 2^{\mathrm{i}}-\mathrm{Zn} 1-\mathrm{N} 1$	$99.52(8)$
$\mathrm{N} 2^{\mathrm{i}}-\mathrm{Zn} 1-\mathrm{N} 2$	$111.04(12)$	$\mathrm{N} 2-\mathrm{Zn} 1-\mathrm{N} 1$	$76.51(8)$
$\mathrm{O} 1 W-\mathrm{Zn} 1-\mathrm{N} 1$	$93.44(6)$	$\mathrm{N} 1-\mathrm{Zn} 1-\mathrm{N} 1^{\mathrm{i}}$	$173.12(12)$

Symmetry code: (i) $-x+1, y,-z+\frac{3}{2}$.

Table 2
Hydrogen-bond geometry ($\mathrm{A}^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 W-\mathrm{H} 1 W \cdots \mathrm{O} 1^{\mathrm{ii}}$	$0.87(2)$	$2.44(3)$	$2.935(2)$	$117(3)$
Symmetry code: (ii) $-x+1,-y,-z+2$.				

The symmetry-independent water H atom was located in a difference Fourier map and was refined with restrained geometry, viz. $\mathrm{O}-\mathrm{H}$ restrained to 0.85 (2) \AA and $\mathrm{H} \cdots \mathrm{H}$ restrained to 1.365 (2) \AA, thus leading to an $\mathrm{H}-\mathrm{O}-\mathrm{H}$ angle of $109(3)^{\circ}$. All other H atoms were placed in calculated positions and treated as riding, with $\mathrm{C}-\mathrm{H}=$ $0.93 \AA$. All H atoms were refined with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ (parent atom).

Data collection: CAD-4-PC Software (Nonius, 1996); cell refinement: CAD-4-PC Software; data reduction: REDU4 (Stoe \& Cie, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

The authors thank Professor Dr Hartmut Fuess, FG Strukturforschung, FB Material- und Geowissenschaften, Technische Universität Darmstadt, for diffractometer time.

Figure 1
The molecular structure of the title compound, showing the atom labelling and displacement ellipsoids drawn at the 50% probability level. Unlabelled atoms are related to labelled atoms by the symmetry operation $\left(-x+1, y,-z+\frac{3}{2}\right)$.

Figure 2
The molecular packing of the title compound, viewed along the a-axis direction, with hydrogen bonds shown as dashed lines. H atoms not involving in hydrogen bonding have been omitted.

References

Cardoso, S. M., Rego, A. C., Pereira, C. \& Oliveira, C. R. (2005). Neurotoxicol. Res. 7, 273-281.
Ii, K. (1995). Drugs Aging, 7, 97-109.
Macías, B., García, I., Villa, M. V., Borrás, J., Castiñeiras, A. \& Sanz, F. (2003). Z. Anorg. Allg. Chem. 629, 255-260.

Miller, L. M., Wang, Q., Telivala, T. P., Smith, R. J., Lanzirotti, A. \& Miklossy, J. (2005). J. Struct. Biol. 152, 204-211.

Nonius (1996). CAD-4-PC Software. Version 1.2. Nonius, Delft, The Netherlands.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

metal-organic papers

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Silva, L. E. da, Joussef, A. C., Foro, S. \& Schmidt, B. (2005). Acta Cryst. E61, o3778-o3779.
Silva, L. E. da, Joussef, A. C., Foro, S. \& Schmidt, B. (2006a). Acta Cryst. E62, m516-m517
Silva, L. E. da, Joussef, A. C., Foro, S. \& Schmidt, B. (2006b). Acta Cryst. E62, m518-m519

Silva, L. E. da, Joussef, A. C., Foro, S. \& Schmidt, B. (2006c). Acta Cryst. E62, m912-m913.
Silva, L. E. da, Joussef, A. C., Foro, S. \& Schmidt, B. (2006d). Acta Cryst. E62, m999-m1001.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Stoe \& Cie (1987). REDU4. Version 6.2c. Stoe \& Cie GmbH, Darmstadt, Germany.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

